# **Current Transducer LF 305-S/SP1**

300 A I<sub>PN</sub>

For the electronic measurement of currents : DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).





#### **Electrical data** I<sub>PN</sub> Primary nominal r.m.s. current Primary current, measuring range $\mathbf{I}_{P}$ $\mathbf{R}_{M}$ Measuring resistance

| Ř <sub>м</sub>  | Measuring resistance                              |                          | $\mathbf{R}_{Mmin}$ | $\mathbf{R}_{_{Mmax}}$ |    |
|-----------------|---------------------------------------------------|--------------------------|---------------------|------------------------|----|
|                 | with ± 15 V                                       | @ ± 300 A <sub>max</sub> | 5                   | 58                     | Ω  |
|                 |                                                   | @ ± 500 A <sub>max</sub> | 5                   | 22                     | Ω  |
| I <sub>sn</sub> | Secondary nominal r.m.s. current                  |                          | 150                 |                        | mA |
| K <sub>N</sub>  | Conversion ratio                                  |                          | 1 : 2000            | C                      |    |
| Vc              | Supply voltage (± 5 %)                            |                          | ± 15                |                        | V  |
| I <sub>c</sub>  | Current consumption                               |                          | 16 + I <sub>s</sub> |                        | mΑ |
| Ň               | R.m.s. voltage for AC isolation test, 50 Hz, 1 mn |                          | 6                   |                        | kV |

300

0..±500

#### Accuracy - Dynamic performance data

| Х <sub>G</sub><br>е | Overall accuracy @ $I_{PN}$ , $T_A = 25^{\circ}C$<br>Linearity                 | ± 0.4<br>< 0.1 |        | %<br>% |
|---------------------|--------------------------------------------------------------------------------|----------------|--------|--------|
|                     |                                                                                | Тур            | Max    |        |
| I <sub>o</sub>      | Offset current @ $I_p = 0$ , $T_A = 25^{\circ}C$                               |                | ± 0.20 | mΑ     |
| I <sub>OM</sub>     | Residual current <sup>1)</sup> @ $I_p = 0$ , after an overload of 3 x $I_{PN}$ |                | ± 0.08 | mΑ     |
| I <sub>OT</sub>     | Thermal drift of $I_0$ - 25°C + 85°C                                           | ± 0.30         | ± 0.70 | mΑ     |
| t <sub>ra</sub>     | Reaction time @ 10 % of I <sub>PN</sub>                                        | < 500          |        | ns     |
| t,                  | Response time <sup>2)</sup> @ 90 % of I <sub>PN</sub>                          | < 1            |        | μs     |
| di/dt               | di/dt accurately followed                                                      | > 100          |        | A/µs   |
| f                   | Frequency bandwidth (- 1 dB)                                                   | DC 1           | 00     | kHz    |
|                     |                                                                                |                |        |        |

#### **General data**

| $T_A$ Ambient operating temperature $T_S$ Ambient storage temperature $R_S$ Secondary coil resistance @ $T_A = 85^{\circ}C$ mMass<br>Standard | - 25 + 85<br>- 40 + 90<br>29<br>95<br>EN 50178 | °C<br>°C<br>Ω |
|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------|
|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------|

### **Features**

A

A

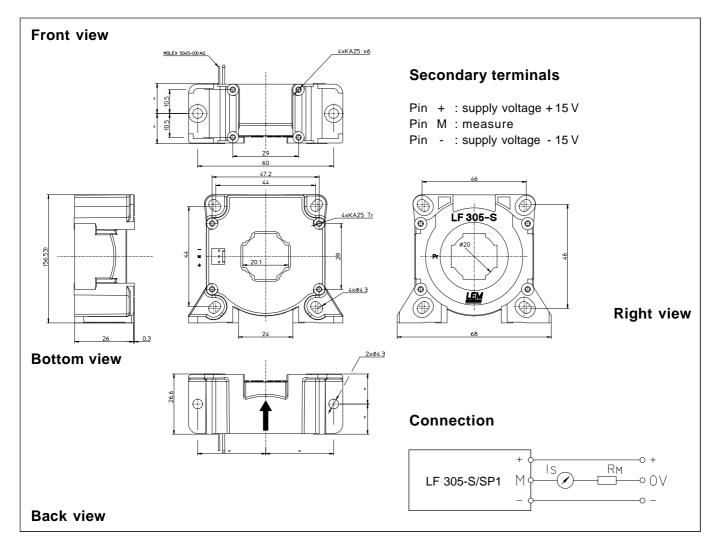
- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

#### **Special features**

- $I_{p} = 0 ... \pm 500 \text{ A}$
- V<sub>c</sub> = ± 15 (± 5 %) V
- $T_{A} = -25^{\circ}C ... + 85^{\circ}C$

### **Advantages**

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- · High immunity to external interference
- Current overload capability.


## **Applications**

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- · Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- · Power supplies for welding applications.

Notes : 1) The result of the coercive field of the magnetic circuit <sup>2)</sup> With a di/dt of 100 A/ $\mu$ s.



# Dimensions LF 305-S/SP1 (in mm. 1 mm = 0.0394 inch)



#### **Mechanical characteristics**

#### • General tolerance

- Fastening
- or
- orPrimary through-hole
- Connection of secondary
- ± 0.5 mm
- 4 holes  $\emptyset$  4.3 mm
- 2 holes  $\emptyset$  4.3 mm
- 3 x 4 PT KA25 screws
- Ø 20 mm
- Molex 5045-03/AG

#### Remarks

- $I_s$  is positive when  $I_p$  flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without previous notice.