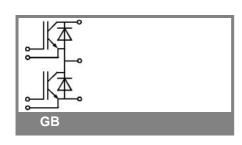


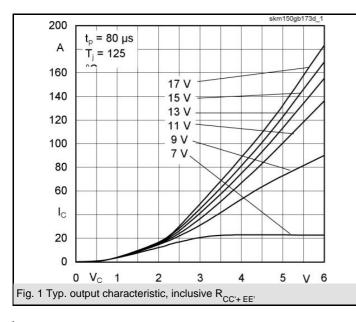
SEMITRANSTM 3

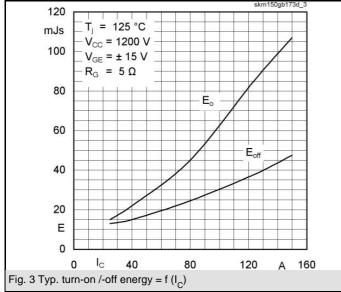
IGBT Modules

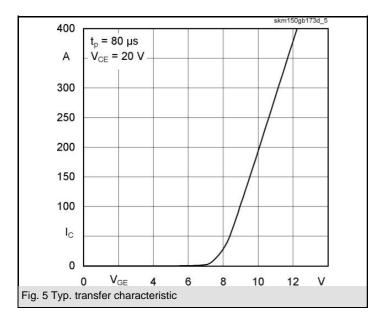
SKM 150GB173D

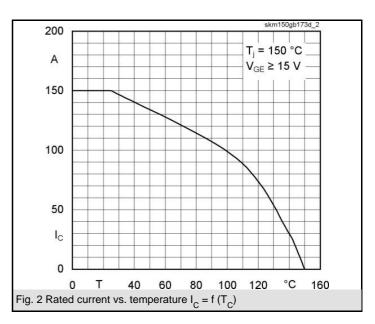
Features

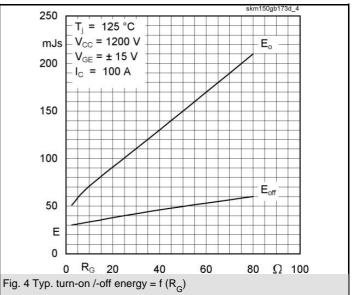

- MOS input (voltage controlled)
- N channel, Homogeneous Si
- Low inductance case
- Very low tail current with low temperatute dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- · Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Direct Copper Bonding
- · Large clearance (13 mm) and creepage distances (20 mm)

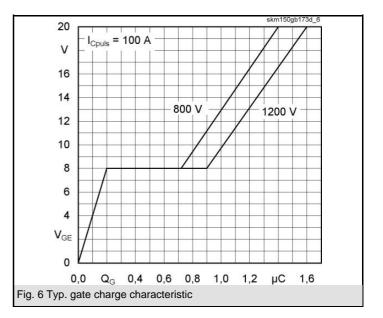

Typical Applications

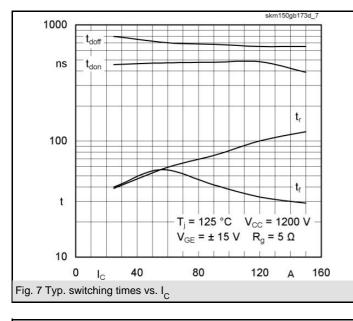

- AC inverter drives on mains 575 - $750 V_{AC}$
- DC bus voltage 750 1200 V_{DC} Public transport (auxiliary syst.)
- Switching (not for linear use)

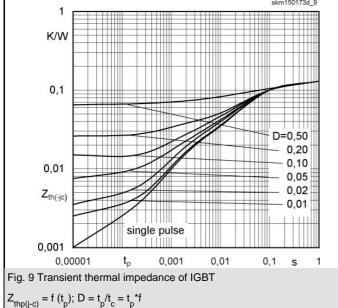

Absolute	Maximum Ratings	Γ_{c} = 25 °C, unless otherwise specified							
Symbol	Conditions	Values	Units						
IGBT									
V _{CES}		1700	V						
I _C	T _c = 25 (80) °C	150 (100)	Α						
I _{CRM}	t _p = 1 ms	200	Α						
V _{GES}		± 20	V						
T _{vj} , (T _{stg})	$T_{OPERATION} \le T_{stg}$	- 40 + 150 (125)	°C						
V _{isol}	AC, 1 min.	4000	V						
Inverse diode									
I _F	T _c = 25 (80) °C	125 (80)	А						
I _{FRM}	t _p = 1 ms	200	А						
I _{FSM}	t _p = 10 ms; sin.; T _j = 150 °C	1100	А						

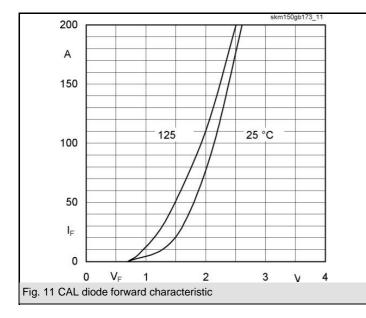

Characte	ristics	Г _с = 25 °С	$_{\rm c}$ = 25 °C, unless otherwise specified				
Symbol	Conditions	min.	typ.	max.	Units		
IGBT							
V _{GE(th)}	$V_{GE} = V_{CE}, I_C = 8 \text{ mA}$	4,8	5,5	6,2	V		
ICES	$V_{GE} = 0, V_{CE} = V_{CES}, T_{j} = 25 (125) \ ^{\circ}C$		0,1	0,3	mA		
V _{CE(TO)}	$T_j = 25 (125) °C$		1,65 (1,9)	,	V		
r _{CE}	V _{GE} = 15 V, T _j = 25 (125) °C		17,5 (23)	,	mΩ		
V _{CE(sat)}	I_{Cnom} = 100 A, V_{GE} = 15 V, chip level		3,4 (4,2)	3,9 (5)	V		
C _{ies}	under following conditions		16		nF		
C _{oes}	V _{GE} = 0, V _{CE} = 25 V, f = 1 MHz		1,3		nF		
C _{res}			0,5		nF		
L _{CE}				20	nH		
R _{CC'+EE'}	res., terminal-chip T _c = 25 (125) °C		0,35 (0,5)		mΩ		
t _{d(on)}	V _{CC} = 1200 V, I _{Cnom} = 100 A		470		ns		
t _r	$R_{Gon} = R_{Goff} = 5 \Omega, T_j = 125 °C$		90		ns		
t _{d(off)}	$V_{GE} = \pm 15 V$		650		ns		
t _f			50		ns		
$E_{on} \left(E_{off} \right)$			60 (32)		mJ		
Inverse d	iode						
$V_F = V_{EC}$	I _{Fnom} = 100 A; V _{GE} = 0 V; T _j = 25 (125) °C		2,2 (1,9)	2,7 (2,4)	V		
V _(TO)	T _i = 125 () °C		1,2	1,5	V		
r _T	T _j = 125 () °C		7	9	mΩ		
I _{RRM}	I _{Fnom} = 100 A; T _j = 25 (125) °C		50 (70)		А		
Q _{rr}	di/dt = 1000 A/µs		10 (27)		μC		
E _{rr}	V _{GE} = V				mJ		
Thermal	characteristics						
R _{th(j-c)}	per IGBT			0,125	K/W		
R _{th(j-c)D}	per Inverse Diode			0,4	K/W		
R _{th(c-s)}	per module			0,038	K/W		
Mechanic	al data				•		
M _s	to heatsink M6	3		5	Nm		
M _t	to terminals M6	2,5		5	Nm		
		1			1		

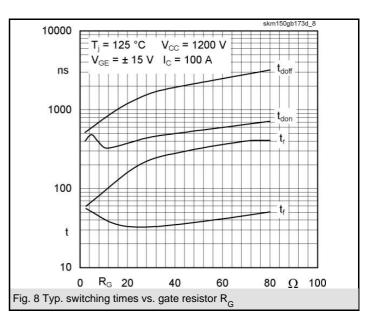


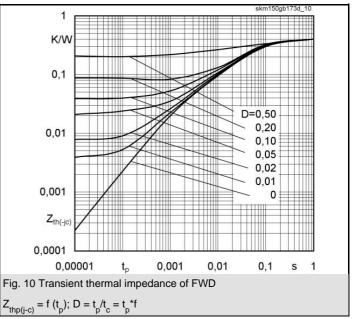


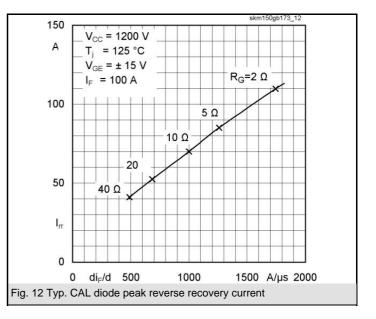


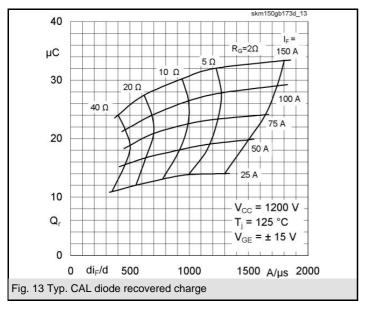


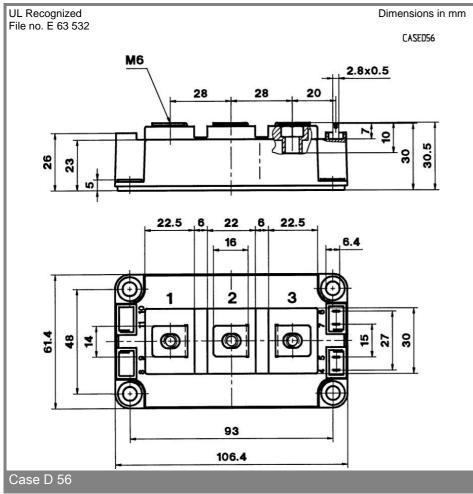


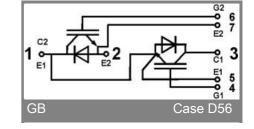












This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.